associatedlocation finished

This commit is contained in:
Rene Kaßeböhmer
2025-04-15 13:45:43 +02:00
parent 9174dafb43
commit 3888e5106e
10 changed files with 107 additions and 6 deletions

View File

@ -0,0 +1,5 @@
ObjectName,FieldName,RawValue,Value
AssociatedLocation,Type,Installer (installation),Installer
AssociatedLocation,Type,Installer (first ignition),Installer
AssociatedLocation,Type,Installer (service),Installer
AssociatedLocation,Type,Installer (Timex),Installer
1 ObjectName FieldName RawValue Value
2 AssociatedLocation Type Installer (installation) Installer
3 AssociatedLocation Type Installer (first ignition) Installer
4 AssociatedLocation Type Installer (service) Installer
5 AssociatedLocation Type Installer (Timex) Installer

View File

@ -0,0 +1 @@
sf sfdmu run --sourceusername rene.kasseboehmer@vaillant.de.devrene --targetusername rene.kasseboehmer@vaillant.de.devrene

View File

@ -0,0 +1,16 @@
{
"allOrNone": true,
"excludeIdsFromCSVFiles": true,
"objects": [
{
"query": "SELECT Type,ActiveFrom,ActiveTo,ParentRecordId$Account,PKey__c, LocationId FROM AssociatedLocation",
"operation": "Insert",
"externalId": "PKey__c",
"useSourceCSVFile": true,
"master": true,
"useValuesMapping": true,
"excludedFields": ["PKey__c"]
}
]
}

View File

@ -2,10 +2,10 @@
[
{
"sobject": "SCInstalledBaseLocation__c",
"query": "SELECT Id, City__c, Country__c, GeoY__c, GeoX__c, PostalCode__c, Street__c, Extension__c, HouseNo__c, FlatNo__c, Floor__c FROM SCInstalledBaseLocation__c WHERE Country__c = 'NL' limit 1"
"query": "SELECT Id, City__c, Country__c, GeoY__c, GeoX__c, PostalCode__c, Street__c, Extension__c, HouseNo__c, FlatNo__c, Floor__c FROM SCInstalledBaseLocation__c WHERE Country__c = 'NL' AND Id = 'a1B1r0000099EsfEAE' limit 1"
},{
"sobject": "SCInstalledBase__c",
"query": "SELECT Id, Name, CommissioningDate__c,InstallationDate__c,ProductEnergy__c, ProductUnitClass__c,ArticleNo__c,SerialNo__c, SerialNoException__c, ProductUnitType__c, InstalledBaseLocation__c FROM SCInstalledBase__c WHERE Country__c = 'NL' limit 1"
"query": "SELECT Id, Name, CommissioningDate__c,InstallationDate__c,ProductEnergy__c, ProductUnitClass__c,ArticleNo__c,SerialNo__c, SerialNoException__c, ProductUnitType__c, InstalledBaseLocation__c FROM SCInstalledBase__c WHERE Country__c = 'NL' AND InstalledBaseLocation__c = 'a1B1r0000099EsfEAE'"
},{
"sobject": "Asset",
"query": "SELECT Id, Serialnumber FROM Asset WHERE Location.ParentLocation.Name LIKE '%NL'"
@ -21,6 +21,9 @@
},{
"sobject": "Product2",
"query": "SELECT Id, Main_Product_Group__c, Family, MaterialType__c, Name, Product_Code__c, ProductCode, EAN_Product_Code__c FROM Product2"
},{
"sobject": "SCInstalledBaseRole__c",
"query": "SELECT Id, InstalledBaseLocation__c, Role__c, ValidFrom__c, ValidTo__c, Account__c FROM SCInstalledBaseRole__c WHERE InstalledBaseLocation__r.Country__c = 'NL' AND InstalledBaseLocation__c = 'a1B1r0000099EsfEAE'"
}
]
}

View File

@ -0,0 +1,11 @@
"Id","InstalledBaseLocation__c","Role__c","ValidFrom__c","ValidTo__c","Account__c"
"a0a1r00000JtNV5AAN","a1B1r0000099EsfEAE","Installer (installation)","2018-03-27","","0012000000eCN6TAAW"
"a0a1r00000JtNV6AAN","a1B1r0000099EsfEAE","Owner","2018-04-06","","0011r00001mmKQ8AAM"
"a0a1r00000JtNVUAA3","a1B1r0000099EsfEAE","Installer (installation)","2018-03-27","","0012000000eCN6TAAW"
"a0a1r00000JtNVVAA3","a1B1r0000099EsfEAE","Owner","2018-04-06","","0011r00001mmKQ8AAM"
"a0a1r00000JtNVtAAN","a1B1r0000099EsfEAE","Installer (installation)","2018-03-27","","0012000000eCN6TAAW"
"a0a1r00000JtNVuAAN","a1B1r0000099EsfEAE","Owner","2018-04-06","","0011r00001mmKQ8AAM"
"a0a1r00000KpzPNAAZ","a1B1r0000099EsfEAE","Installer (installation)","2018-03-27","","0012000000eCN6TAAW"
"a0a1r00000KpzPOAAZ","a1B1r0000099EsfEAE","Owner","2018-03-28","","0011r00001mmKQ8AAM"
"a0a1r00000KpzQQAAZ","a1B1r0000099EsfEAE","Installer (installation)","2018-03-27","","0012000000eCN6TAAW"
"a0a1r00000KpzQRAAZ","a1B1r0000099EsfEAE","Owner","2018-03-28","","0011r00001mmKQ8AAM"
1 Id InstalledBaseLocation__c Role__c ValidFrom__c ValidTo__c Account__c
2 a0a1r00000JtNV5AAN a1B1r0000099EsfEAE Installer (installation) 2018-03-27 0012000000eCN6TAAW
3 a0a1r00000JtNV6AAN a1B1r0000099EsfEAE Owner 2018-04-06 0011r00001mmKQ8AAM
4 a0a1r00000JtNVUAA3 a1B1r0000099EsfEAE Installer (installation) 2018-03-27 0012000000eCN6TAAW
5 a0a1r00000JtNVVAA3 a1B1r0000099EsfEAE Owner 2018-04-06 0011r00001mmKQ8AAM
6 a0a1r00000JtNVtAAN a1B1r0000099EsfEAE Installer (installation) 2018-03-27 0012000000eCN6TAAW
7 a0a1r00000JtNVuAAN a1B1r0000099EsfEAE Owner 2018-04-06 0011r00001mmKQ8AAM
8 a0a1r00000KpzPNAAZ a1B1r0000099EsfEAE Installer (installation) 2018-03-27 0012000000eCN6TAAW
9 a0a1r00000KpzPOAAZ a1B1r0000099EsfEAE Owner 2018-03-28 0011r00001mmKQ8AAM
10 a0a1r00000KpzQQAAZ a1B1r0000099EsfEAE Installer (installation) 2018-03-27 0012000000eCN6TAAW
11 a0a1r00000KpzQRAAZ a1B1r0000099EsfEAE Owner 2018-03-28 0011r00001mmKQ8AAM

View File

@ -9,6 +9,7 @@ country_mapping = {
read_df = pd.read_csv('../1_extract_data/results/SCInstalledBaseLocation__c.csv', header=0, keep_default_na=False, dtype=str)
read_df_ib = pd.read_csv('../1_extract_data/results/SCInstalledBase__c.csv', header=0, keep_default_na=False, dtype=str)
read_df_product2 = pd.read_csv('../1_extract_data/results/Product2.csv', header=0, keep_default_na=False, dtype=str)
read_df_ibr = pd.read_csv('../1_extract_data/results/SCInstalledBaseRole__c.csv', header=0, keep_default_na=False, dtype=str)
for row in read_df.to_dict('records'):
try:
@ -28,11 +29,14 @@ reindex_columns_ib = ['Id','Name','CommissioningDate__c','InstallationDate__c','
#"Id","Main_Product_Group__c","Family","MaterialType__c","Name","Product_Code__c","ProductCode","EAN_Product_Code__c"
reindex_columns_product2 = ['Id','Main_Product_Group__c','Family','MaterialType__c','Name','Product_Code__c','ProductCode','EAN_Product_Code__c']
#reindex_columns_product2 = ['EAN_Product_Code__c','Family','Id','Main_Product_Group__c','MaterialType__c','Name','Product_Code__c','ProductCode']
#"Id","InstalledBaseLocation__c","Role__c","ValidFrom__c","ValidTo__c","Account__c"
reindex_columns_ibr = ['Id', 'InstalledBaseLocation__c', 'Role__c', 'ValidFrom__c', 'ValidTo__c', 'Account__c']
# Reindex the columns to match the desired format
df = read_df.reindex(reindex_columns, axis=1)
df_ib = read_df_ib.reindex(reindex_columns_ib, axis=1)
df_product2 = read_df_product2.reindex(reindex_columns_product2, axis=1)
df_ibr = read_df_ibr.reindex(reindex_columns_ibr, axis=1)
df['Street'] = (
df['Street__c'].astype(str) + ' ' +
@ -117,7 +121,7 @@ parent_df['IsMobile'] = 'false'
parent_df['LocationType'] = 'Site'
## 3. Child_Location.csv
child_columns = ['Extension__c', 'FlatNo__c', 'Floor__c', 'City__c', 'Country__c',
child_columns = ['Id', 'Extension__c', 'FlatNo__c', 'Floor__c', 'City__c', 'Country__c',
'PostalCode__c', 'Street', 'PKey__c']
# Modify child_df by explicitly creating a new DataFrame
child_df = df[child_columns].copy() # Add .copy() to create an explicit copy
@ -142,7 +146,7 @@ child_df['ExternalReference'] = (
)
# Rename columns to match the desired format
child_df.columns = ['Extension__c', 'Flat__c', 'Floor__c', 'City', 'Country',
child_df.columns = ['Id', 'Extension__c', 'Flat__c', 'Floor__c', 'City', 'Country',
'PostalCode', 'Street', 'PKey__c', 'Name', 'ExternalReference']
child_df = child_df.drop_duplicates(subset=['Extension__c', 'Flat__c', 'Floor__c','City', 'Country', 'PostalCode', 'Street'], keep='first')
@ -180,11 +184,33 @@ merged_df_ib = merged_df_ib.drop('Product_Code__c', axis=1)
merged_df_ib = merged_df_ib.drop_duplicates(subset=['Name','SerialNumber'], keep='first')
# Merging LPG into one Value for Assets
merged_df_ib = merged_df_ib.replace({'Kind_of_Energy__c': {'4': '3', '5': '3'}})
## 5. SCInstalledBaseRole__c.csv
df_ibr = pd.merge(df_ibr,
child_df[['Id', 'ExternalReference']],
left_on='InstalledBaseLocation__c',
right_on='Id',
how='left')
df_ibr = df_ibr.drop_duplicates(subset=['InstalledBaseLocation__c', 'Role__c', 'Account__c'], keep='first')
df_ibr = df_ibr.drop('Id_x', axis=1)
df_ibr = df_ibr.drop('Id_y', axis=1)
df_ibr = df_ibr.drop('InstalledBaseLocation__c', axis=1)
print(df_ibr.columns)
df_ibr.columns = ['Type', 'ActiveFrom', 'ActiveTo', 'ParentRecordId', 'Location.ExternalReference']
#remove kind_of_energy__c and kind_of_installation if field dependency to main product group is not correct
# Create the mapping dictionary
kind_of_energy_mapping = {
'1': ['A2', 'A1', 'B2', 'B1', 'E1', '14', 'E3', '17'],
'2': ['A2', 'A1', 'B2', 'B1', 'E1', '14', 'E3', '17'],
'3': ['A2', 'A1', 'B2', 'B1', 'E1', '14', 'E3', '17'],
'G': ['A2', 'A1', 'B2', 'B1', 'E1', 'E3', '17'],
'6': ['B3', '11', '13', '14', '17'],
'8': ['B4'],
@ -227,6 +253,7 @@ address_df.to_csv('../3_upsert_address_and_parent_location/Address.csv', index=F
parent_df.to_csv('../3_upsert_address_and_parent_location/Location.csv', index=False)
child_df.to_csv('../5_upsert_child_location/Location.csv', index=False)
merged_df_ib.to_csv('../7_upsert_assets/Asset.csv', index=False)
df_ibr.to_csv('../9_upsert_associated_location/AssociatedLocation.csv', index=False)
## end mapping

View File

@ -1,3 +1,8 @@
ObjectName,FieldName,RawValue,Value
Asset,Kind_of_Energy__c,4,3
Asset,Kind_of_Energy__c,5,3
Asset,Kind_of_Energy__c,5,3
Asset,Serialnumber_Exception__c,350001,Missing
Asset,Serialnumber_Exception__c,350002,Not Readable
Asset,Serialnumber_Exception__c,350003,Not Readable
Asset,Serialnumber_Exception__c,350004,Rejected by the system
Asset,Serialnumber_Exception__c,350005,Missing
1 ObjectName FieldName RawValue Value
2 Asset Kind_of_Energy__c 4 3
3 Asset Kind_of_Energy__c 5 3
4 Asset Serialnumber_Exception__c 350001 Missing
5 Asset Serialnumber_Exception__c 350002 Not Readable
6 Asset Serialnumber_Exception__c 350003 Not Readable
7 Asset Serialnumber_Exception__c 350004 Rejected by the system
8 Asset Serialnumber_Exception__c 350005 Missing

View File

@ -15,7 +15,8 @@
},{
"query": "SELECT Product2Id,InstallDate,Name,Kind_of_Energy__c,Main_Product_Group__c,SerialNumber,Serialnumber_Exception__c,LocationId FROM Asset",
"operation": "Insert",
"master": true
"master": true,
"useValuesMapping": true
}
]
}

View File

@ -0,0 +1,31 @@
import pandas as pd
read_df_al = pd.read_csv('../10_upsert_associated_location/AssociatedLocation.csv', header=0, keep_default_na=False, dtype=str)
read_df_l = pd.read_csv('../5_upsert_child_location/target/Location_insert_target.csv', header=0, keep_default_na=False, dtype=str)
#Type,ActiveFrom,ActiveTo,ParentRecordId,PKey__c
reindex_columns_al = ['Type','ActiveFrom','ActiveTo','ParentRecordId','PKey__c']
#Errors,ExternalReference,Id,IsInventoryLocation,IsMobile,LocationType,Name,PKey__c
reindex_columns_l = ['Errors','ExternalReference','Id','IsInventoryLocation','IsMobile','LocationType','Name','PKey__c']
# Reindex the columns to match the desired format
df_al = read_df_al.reindex(reindex_columns_al, axis=1)
df_l = read_df_l.reindex(reindex_columns_l, axis=1)
# Merge df_al with df_l including Id abse on PKey__c
merged_df_al = pd.merge(df_al,
df_l[['Id', 'ExternalReference']],
left_on='PKey__c',
right_on='ExternalReference',
how='left')
#drop External Reference
merged_df_al = merged_df_al.drop('ExternalReference', axis=1)
#Rename columns
merged_df_al.columns = ['Type','ActiveFrom','ActiveTo','ParentRecordId','PKey__c','LocationId']
#safe csv
merged_df_al.to_csv('../10_upsert_associated_location/AssociatedLocation.csv', index=False)

View File

@ -0,0 +1 @@
python .\FillLocationId.py