change to simple_salesforce for data load
This commit is contained in:
@ -3,12 +3,12 @@
|
||||
"useSeparatedCSVFiles": true,
|
||||
"pollingQueryTimeoutMs": 1000000,
|
||||
"bulkApiVersion": "2.0",
|
||||
"parallelRestJobs": 2,
|
||||
"queryBulkApiThreshold ": 100,
|
||||
"objectSets": [
|
||||
{
|
||||
"objects": [
|
||||
{
|
||||
"query": "SELECT Id, City__c, Country__c, GeoY__c, GeoX__c, PostalCode__c, Street__c, Extension__c, HouseNo__c, FlatNo__c, Floor__c FROM SCInstalledBaseLocation__c WHERE Country__c = 'NL'",
|
||||
"query": "SELECT Id, City__c, Country__c, GeoY__c, GeoX__c, PostalCode__c, Street__c, Extension__c, HouseNo__c, FlatNo__c, Floor__c FROM SCInstalledBaseLocation__c WHERE Country__c = 'NL' limit 1000",
|
||||
"externalId": "Name",
|
||||
"operation": "Readonly"
|
||||
}
|
||||
@ -19,7 +19,18 @@
|
||||
"query": "SELECT Id, Name, CommissioningDate__c,InstallationDate__c,ProductEnergy__c, ProductUnitClass__c,ArticleNo__c,SerialNo__c, SerialNoException__c, ProductUnitType__c, InstalledBaseLocation__c FROM SCInstalledBase__c WHERE Country__c = 'NL'",
|
||||
"externalId": "Name",
|
||||
"operation": "Readonly",
|
||||
"excludedFromUpdateFields": ["InstalledBaseLocation__c"]
|
||||
"master":true,
|
||||
"excludedFromUpdateFields": ["InstalledBaseLocation__c"],
|
||||
"skipRecordsComparison": true,
|
||||
"parallelRestJobs": 4,
|
||||
"restApiBatchSize": 9500,
|
||||
"fieldMapping": [
|
||||
{
|
||||
"sourceField": "InstalledBaseLocation__c",
|
||||
"targetField": "Id",
|
||||
"targetObject": "SCInstalledBaseLocation__c"
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
},{
|
||||
@ -33,10 +44,10 @@
|
||||
},{
|
||||
"objects": [
|
||||
{
|
||||
"query": "SELECT Id, Country, CountryCode, Street, City, ParentId PostalCode FROM Address WHERE CountryCode = 'NL'",
|
||||
"query": "SELECT Id, Country, CountryCode, Street, City, ParentId, PostalCode FROM Address WHERE CountryCode = 'NL'",
|
||||
"externalId": "Name",
|
||||
"operation": "Readonly",
|
||||
"excludedFields": ["ParentId"]
|
||||
"excludedFromUpdateFields": ["ParentId"]
|
||||
}
|
||||
]
|
||||
|
||||
@ -48,6 +59,14 @@
|
||||
"operation": "Readonly"
|
||||
}
|
||||
]
|
||||
},{
|
||||
"objects": [
|
||||
{
|
||||
"query": "SELECT Id, Main_Product_Group__c, Family, MaterialType__c, Name, Product_Code__c, ProductCode, EAN_Product_Code__c FROM Product2",
|
||||
"externalId": "Name",
|
||||
"operation": "Readonly"
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
137
prepared_steps/1_extract_data/extract_via_simple_salesforce.py
Normal file
137
prepared_steps/1_extract_data/extract_via_simple_salesforce.py
Normal file
@ -0,0 +1,137 @@
|
||||
# python extract_via_simple_salesforce.py \
|
||||
# --context qa2 \
|
||||
# --object_id Account \
|
||||
# --output_path extracted_data
|
||||
|
||||
import os
|
||||
import pandas as pd
|
||||
from dotenv import load_dotenv, find_dotenv
|
||||
from simple_salesforce import Salesforce
|
||||
|
||||
def get_credentials(context):
|
||||
"""
|
||||
Get credentials for a given context from the .env file
|
||||
|
||||
Args:
|
||||
context (str): Context name (e.g., 'qa2', 'prod')
|
||||
|
||||
Returns:
|
||||
dict: Credentials dictionary with username, password, and security_token
|
||||
"""
|
||||
context = context.upper()
|
||||
|
||||
# Initialize credentials dictionary
|
||||
credentials = {
|
||||
'USERNAME': None,
|
||||
'PASSWORD': None,
|
||||
'SECURITY_TOKEN': None,
|
||||
'DOMAIN': 'test'
|
||||
}
|
||||
|
||||
# Load the .env file explicitly from one directory above
|
||||
env_file = find_dotenv("../.env")
|
||||
load_dotenv(env_file)
|
||||
|
||||
# Load all environment variables
|
||||
env_vars = os.environ
|
||||
|
||||
for key, value in env_vars.items():
|
||||
#print(f'{context}_SF_', key, value)
|
||||
if f'{context}_SF_' in key:
|
||||
credential_key = key.split(f'{context}_SF_')[-1].upper()
|
||||
print(credential_key)
|
||||
credentials[credential_key] = value
|
||||
|
||||
return credentials
|
||||
|
||||
def extract_data(object_id, output_path='output', context='qa2'):
|
||||
"""
|
||||
Extract data using Bulk API and save as CSV
|
||||
|
||||
Args:
|
||||
object_id (str): Salesforce object ID
|
||||
output_path (str): Path to save the output file (default 'output')
|
||||
context (str): Context name for credentials (e.g., 'qa2', 'prod')
|
||||
"""
|
||||
try:
|
||||
# Get credentials based on context
|
||||
credentials = get_credentials(context)
|
||||
|
||||
print(credentials)
|
||||
if not all(credentials.values()):
|
||||
raise ValueError(f"Missing credentials for context: {context}")
|
||||
|
||||
# Initialize Salesforce bulk connector
|
||||
sf = Salesforce(
|
||||
username=credentials['USERNAME'],
|
||||
password=credentials['PASSWORD'],
|
||||
security_token=credentials['SECURITY_TOKEN'],
|
||||
domain=credentials['DOMAIN']
|
||||
)
|
||||
|
||||
# Create a simple query for the desired object
|
||||
soql_query = f"""
|
||||
SELECT Id, Name
|
||||
FROM SCInstalledBase__c
|
||||
WHERE Country__c = 'NL' limit 1000
|
||||
"""
|
||||
|
||||
sf.bulk2.__getattr__("SCInstalledBase__c").download(
|
||||
soql_query, path="./", max_records=200000
|
||||
)
|
||||
|
||||
"""
|
||||
# Execute the Bulk query job
|
||||
job = sf.bulk2.__getattr__("SCInstalledBase__c").query(soql_query)
|
||||
|
||||
# Polling for job completion (might take a moment)
|
||||
job_id = job['id']
|
||||
while True:
|
||||
status = sf.bulk.job(job_id).get()['status']
|
||||
if status == 'Complete' or status == 'Closed' :
|
||||
break
|
||||
if status == 'Aborted':
|
||||
exit(1)
|
||||
if status == 'Failed':
|
||||
raise ValueError(f'Job failed: {job_id}')
|
||||
|
||||
|
||||
# Get the results
|
||||
result = sf.bulk.result(job_id)
|
||||
df = pd.DataFrame(result.records)
|
||||
|
||||
# Create output directory if it doesn't exist
|
||||
os.makedirs(output_path, exist_ok=True)
|
||||
|
||||
# Save to CSV file
|
||||
csv_file = os.path.join(output_path, f'{object_id}_data.csv')
|
||||
df.to_csv(csv_file, index=False)
|
||||
|
||||
print(f'Successfully extracted {len(df)} records from {object_id}')
|
||||
return csv_file
|
||||
"""
|
||||
except Exception as e:
|
||||
raise ValueError(f'Error extracting data: {str(e)}')
|
||||
|
||||
if __name__ == '__main__':
|
||||
import argparse
|
||||
|
||||
# Parse command-line arguments
|
||||
parser = argparse.ArgumentParser(description='Extract Salesforce data via Bulk API')
|
||||
parser.add_argument('--context', type=str, required=True,
|
||||
help='Context name (e.g., "qa2", "prod")')
|
||||
parser.add_argument('--object_id', type=str, required=True,
|
||||
help='Account, SCInstalledBaseLocation__c, SCInstalledBase__c, Product2')
|
||||
parser.add_argument('--output_path', type=str, required=False,
|
||||
help='./')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Extract data using parameters
|
||||
output_file = extract_data(
|
||||
object_id=args.object_id,
|
||||
output_path=args.output_path,
|
||||
context=args.context
|
||||
)
|
||||
|
||||
print(f'File saved at: {output_file}')
|
@ -5,8 +5,10 @@ country_mapping = {
|
||||
}
|
||||
|
||||
# Read the input CSV file, assuming the second row is the header
|
||||
read_df = pd.read_csv('../1_extract_data/SCInstalledBaseLocation__c.csv', header=0, keep_default_na=False, dtype=str)
|
||||
read_df_ib = pd.read_csv('../1_extract_data/SCInstalledBase__c.csv', header=0, keep_default_na=False, dtype=str)
|
||||
read_df = pd.read_csv('../1_extract_data/target/SCInstalledBaseLocation__c_upsert_target.csv', header=0, keep_default_na=False, dtype=str)
|
||||
read_df_ib = pd.read_csv('../1_extract_data/target/object-set-2/SCInstalledBase__c_upsert_target.csv', header=0, keep_default_na=False, dtype=str)
|
||||
read_df_product2 = pd.read_csv('../1_extract_data/target/object-set-6/Product2_upsert_target.csv', header=0, keep_default_na=False, dtype=str)
|
||||
|
||||
for row in read_df.to_dict('records'):
|
||||
try:
|
||||
# Your processing logic here
|
||||
@ -18,10 +20,13 @@ for row in read_df.to_dict('records'):
|
||||
reindex_columns = ['City__c','Country__c','Extension__c','FlatNo__c','Floor__c','GeoX__c','GeoY__c','HouseNo__c','Id','PostalCode__c','Street__c']
|
||||
# ArticleNo__c,CommissioningDate__c,Id,InstallationDate__c,InstalledBaseLocation__c,InstalledBaseLocation__r.Id,Name,ProductEnergy__c,ProductUnitClass__c,ProductUnitType__c,SerialNo__c,SerialNoException__c
|
||||
reindex_columns_ib = ['ArticleNo__c','CommissioningDate__c','Id','InstallationDate__c','InstalledBaseLocation__c','InstalledBaseLocation__r.Id','Name','ProductEnergy__c','ProductUnitClass__c','ProductUnitType__c','SerialNo__c','SerialNoException__c']
|
||||
# EAN_Product_Code__c,Family,Id,Main_Product_Group__c,MaterialType__c,Name,Product_Code__c,ProductCode
|
||||
reindex_columns_product2 = ['EAN_Product_Code__c','Family','Id','Main_Product_Group__c','MaterialType__c','Name','Product_Code__c','ProductCode']
|
||||
|
||||
# Reindex the columns to match the desired format
|
||||
df = read_df.reindex(reindex_columns, axis=1)
|
||||
df_ib = read_df_ib.reindex(reindex_columns_ib, axis=1)
|
||||
df_product2 = read_df_product2.reindex(reindex_columns_product2, axis=1)
|
||||
|
||||
df['Street'] = (
|
||||
df['Street__c'].astype(str) + ' ' +
|
||||
@ -151,7 +156,20 @@ merged_df_ib = merged_df_ib.drop('InstalledBaseLocation__c', axis=1)
|
||||
merged_df_ib = merged_df_ib.drop('InstalledBaseLocation__r.Id', axis=1)
|
||||
merged_df_ib = merged_df_ib.drop('Id_y', axis=1)
|
||||
print(merged_df_ib.columns)
|
||||
merged_df_ib.columns = ['Product2.EAN_Product_Code__c', 'FSL_1st_Ignition_Date__c', 'Id', 'InstallDate', 'Name', 'Kind_of_Energy__c', 'Kind_of_Installation__c', 'Main_Product_Group__c', 'SerialNumber', 'Serialnumber_Exception__c', 'Location.ExternalReference']
|
||||
merged_df_ib.columns = ['Product2.Product_Code__c', 'FSL_1st_Ignition_Date__c', 'Id', 'InstallDate', 'Name', 'Kind_of_Energy__c', 'Kind_of_Installation__c', 'Main_Product_Group__c', 'SerialNumber', 'Serialnumber_Exception__c', 'Location.ExternalReference']
|
||||
merged_df_ib = merged_df_ib.drop('Main_Product_Group__c', axis=1)
|
||||
|
||||
# assign Main_Product_Group__c based on product2 records
|
||||
merged_df_ib = pd.merge(merged_df_ib,
|
||||
df_product2[['Product_Code__c', 'Main_Product_Group__c']],
|
||||
left_on='Product2.Product_Code__c',
|
||||
right_on='Product_Code__c',
|
||||
how='left')
|
||||
|
||||
merged_df_ib = merged_df_ib.drop('Product_Code__c', axis=1)
|
||||
|
||||
merged_df_ib = merged_df_ib.drop_duplicates(subset=['Id'], keep='first')
|
||||
|
||||
|
||||
# Write each DataFrame to a separate CSV file
|
||||
address_df.to_csv('../3_upsert_address_and_parent_location/Address.csv', index=False)
|
||||
@ -159,4 +177,6 @@ parent_df.to_csv('../3_upsert_address_and_parent_location/Location.csv', index=F
|
||||
child_df.to_csv('../5_upsert_child_location/Location.csv', index=False)
|
||||
merged_df_ib.to_csv('../7_upsert_assets/Asset.csv', index=False)
|
||||
|
||||
## end mapping
|
||||
|
||||
print('Data has been successfully split into Address.csv, Parent_Location.csv, and Child_Location.csv files with duplicate checks applied.')
|
@ -1,2 +1,3 @@
|
||||
ObjectName,FieldName,RawValue,Value
|
||||
Asset,Kind_of_Energy__c,2,
|
||||
Asset,Kind_of_Energy__c,4,3
|
||||
Asset,Kind_of_Energy__c,5,3
|
|
@ -7,9 +7,9 @@
|
||||
"operation": "Readonly",
|
||||
"externalId": "ExternalReference"
|
||||
},{
|
||||
"query": "SELECT EAN_Product_Code__c FROM Product2 WHERE EAN_Product_Code__c != null",
|
||||
"query": "SELECT Product_Code__c FROM Product2 WHERE Product_Code__c != null",
|
||||
"operation": "Readonly",
|
||||
"externalId": "EAN_Product_Code__c"
|
||||
"externalId": "Product_Code__c "
|
||||
},{
|
||||
"query": "SELECT Product2Id,Id,InstallDate,Name,Kind_of_Energy__c,Kind_of_Installation__c,Main_Product_Group__c,SerialNumber,Serialnumber_Exception__c,LocationId FROM Asset",
|
||||
"operation": "Insert"
|
||||
|
Reference in New Issue
Block a user