change to simple_salesforce for data load

This commit is contained in:
Rene Kaßeböhmer
2025-04-08 16:02:58 +02:00
parent 5eb314fbf7
commit 2e6d82d9cc
5 changed files with 188 additions and 11 deletions

View File

@ -3,12 +3,12 @@
"useSeparatedCSVFiles": true, "useSeparatedCSVFiles": true,
"pollingQueryTimeoutMs": 1000000, "pollingQueryTimeoutMs": 1000000,
"bulkApiVersion": "2.0", "bulkApiVersion": "2.0",
"parallelRestJobs": 2, "queryBulkApiThreshold ": 100,
"objectSets": [ "objectSets": [
{ {
"objects": [ "objects": [
{ {
"query": "SELECT Id, City__c, Country__c, GeoY__c, GeoX__c, PostalCode__c, Street__c, Extension__c, HouseNo__c, FlatNo__c, Floor__c FROM SCInstalledBaseLocation__c WHERE Country__c = 'NL'", "query": "SELECT Id, City__c, Country__c, GeoY__c, GeoX__c, PostalCode__c, Street__c, Extension__c, HouseNo__c, FlatNo__c, Floor__c FROM SCInstalledBaseLocation__c WHERE Country__c = 'NL' limit 1000",
"externalId": "Name", "externalId": "Name",
"operation": "Readonly" "operation": "Readonly"
} }
@ -19,7 +19,18 @@
"query": "SELECT Id, Name, CommissioningDate__c,InstallationDate__c,ProductEnergy__c, ProductUnitClass__c,ArticleNo__c,SerialNo__c, SerialNoException__c, ProductUnitType__c, InstalledBaseLocation__c FROM SCInstalledBase__c WHERE Country__c = 'NL'", "query": "SELECT Id, Name, CommissioningDate__c,InstallationDate__c,ProductEnergy__c, ProductUnitClass__c,ArticleNo__c,SerialNo__c, SerialNoException__c, ProductUnitType__c, InstalledBaseLocation__c FROM SCInstalledBase__c WHERE Country__c = 'NL'",
"externalId": "Name", "externalId": "Name",
"operation": "Readonly", "operation": "Readonly",
"excludedFromUpdateFields": ["InstalledBaseLocation__c"] "master":true,
"excludedFromUpdateFields": ["InstalledBaseLocation__c"],
"skipRecordsComparison": true,
"parallelRestJobs": 4,
"restApiBatchSize": 9500,
"fieldMapping": [
{
"sourceField": "InstalledBaseLocation__c",
"targetField": "Id",
"targetObject": "SCInstalledBaseLocation__c"
}
]
} }
] ]
},{ },{
@ -33,10 +44,10 @@
},{ },{
"objects": [ "objects": [
{ {
"query": "SELECT Id, Country, CountryCode, Street, City, ParentId PostalCode FROM Address WHERE CountryCode = 'NL'", "query": "SELECT Id, Country, CountryCode, Street, City, ParentId, PostalCode FROM Address WHERE CountryCode = 'NL'",
"externalId": "Name", "externalId": "Name",
"operation": "Readonly", "operation": "Readonly",
"excludedFields": ["ParentId"] "excludedFromUpdateFields": ["ParentId"]
} }
] ]
@ -48,6 +59,14 @@
"operation": "Readonly" "operation": "Readonly"
} }
] ]
},{
"objects": [
{
"query": "SELECT Id, Main_Product_Group__c, Family, MaterialType__c, Name, Product_Code__c, ProductCode, EAN_Product_Code__c FROM Product2",
"externalId": "Name",
"operation": "Readonly"
}
]
} }
] ]
} }

View File

@ -0,0 +1,137 @@
# python extract_via_simple_salesforce.py \
# --context qa2 \
# --object_id Account \
# --output_path extracted_data
import os
import pandas as pd
from dotenv import load_dotenv, find_dotenv
from simple_salesforce import Salesforce
def get_credentials(context):
"""
Get credentials for a given context from the .env file
Args:
context (str): Context name (e.g., 'qa2', 'prod')
Returns:
dict: Credentials dictionary with username, password, and security_token
"""
context = context.upper()
# Initialize credentials dictionary
credentials = {
'USERNAME': None,
'PASSWORD': None,
'SECURITY_TOKEN': None,
'DOMAIN': 'test'
}
# Load the .env file explicitly from one directory above
env_file = find_dotenv("../.env")
load_dotenv(env_file)
# Load all environment variables
env_vars = os.environ
for key, value in env_vars.items():
#print(f'{context}_SF_', key, value)
if f'{context}_SF_' in key:
credential_key = key.split(f'{context}_SF_')[-1].upper()
print(credential_key)
credentials[credential_key] = value
return credentials
def extract_data(object_id, output_path='output', context='qa2'):
"""
Extract data using Bulk API and save as CSV
Args:
object_id (str): Salesforce object ID
output_path (str): Path to save the output file (default 'output')
context (str): Context name for credentials (e.g., 'qa2', 'prod')
"""
try:
# Get credentials based on context
credentials = get_credentials(context)
print(credentials)
if not all(credentials.values()):
raise ValueError(f"Missing credentials for context: {context}")
# Initialize Salesforce bulk connector
sf = Salesforce(
username=credentials['USERNAME'],
password=credentials['PASSWORD'],
security_token=credentials['SECURITY_TOKEN'],
domain=credentials['DOMAIN']
)
# Create a simple query for the desired object
soql_query = f"""
SELECT Id, Name
FROM SCInstalledBase__c
WHERE Country__c = 'NL' limit 1000
"""
sf.bulk2.__getattr__("SCInstalledBase__c").download(
soql_query, path="./", max_records=200000
)
"""
# Execute the Bulk query job
job = sf.bulk2.__getattr__("SCInstalledBase__c").query(soql_query)
# Polling for job completion (might take a moment)
job_id = job['id']
while True:
status = sf.bulk.job(job_id).get()['status']
if status == 'Complete' or status == 'Closed' :
break
if status == 'Aborted':
exit(1)
if status == 'Failed':
raise ValueError(f'Job failed: {job_id}')
# Get the results
result = sf.bulk.result(job_id)
df = pd.DataFrame(result.records)
# Create output directory if it doesn't exist
os.makedirs(output_path, exist_ok=True)
# Save to CSV file
csv_file = os.path.join(output_path, f'{object_id}_data.csv')
df.to_csv(csv_file, index=False)
print(f'Successfully extracted {len(df)} records from {object_id}')
return csv_file
"""
except Exception as e:
raise ValueError(f'Error extracting data: {str(e)}')
if __name__ == '__main__':
import argparse
# Parse command-line arguments
parser = argparse.ArgumentParser(description='Extract Salesforce data via Bulk API')
parser.add_argument('--context', type=str, required=True,
help='Context name (e.g., "qa2", "prod")')
parser.add_argument('--object_id', type=str, required=True,
help='Account, SCInstalledBaseLocation__c, SCInstalledBase__c, Product2')
parser.add_argument('--output_path', type=str, required=False,
help='./')
args = parser.parse_args()
# Extract data using parameters
output_file = extract_data(
object_id=args.object_id,
output_path=args.output_path,
context=args.context
)
print(f'File saved at: {output_file}')

View File

@ -5,8 +5,10 @@ country_mapping = {
} }
# Read the input CSV file, assuming the second row is the header # Read the input CSV file, assuming the second row is the header
read_df = pd.read_csv('../1_extract_data/SCInstalledBaseLocation__c.csv', header=0, keep_default_na=False, dtype=str) read_df = pd.read_csv('../1_extract_data/target/SCInstalledBaseLocation__c_upsert_target.csv', header=0, keep_default_na=False, dtype=str)
read_df_ib = pd.read_csv('../1_extract_data/SCInstalledBase__c.csv', header=0, keep_default_na=False, dtype=str) read_df_ib = pd.read_csv('../1_extract_data/target/object-set-2/SCInstalledBase__c_upsert_target.csv', header=0, keep_default_na=False, dtype=str)
read_df_product2 = pd.read_csv('../1_extract_data/target/object-set-6/Product2_upsert_target.csv', header=0, keep_default_na=False, dtype=str)
for row in read_df.to_dict('records'): for row in read_df.to_dict('records'):
try: try:
# Your processing logic here # Your processing logic here
@ -18,10 +20,13 @@ for row in read_df.to_dict('records'):
reindex_columns = ['City__c','Country__c','Extension__c','FlatNo__c','Floor__c','GeoX__c','GeoY__c','HouseNo__c','Id','PostalCode__c','Street__c'] reindex_columns = ['City__c','Country__c','Extension__c','FlatNo__c','Floor__c','GeoX__c','GeoY__c','HouseNo__c','Id','PostalCode__c','Street__c']
# ArticleNo__c,CommissioningDate__c,Id,InstallationDate__c,InstalledBaseLocation__c,InstalledBaseLocation__r.Id,Name,ProductEnergy__c,ProductUnitClass__c,ProductUnitType__c,SerialNo__c,SerialNoException__c # ArticleNo__c,CommissioningDate__c,Id,InstallationDate__c,InstalledBaseLocation__c,InstalledBaseLocation__r.Id,Name,ProductEnergy__c,ProductUnitClass__c,ProductUnitType__c,SerialNo__c,SerialNoException__c
reindex_columns_ib = ['ArticleNo__c','CommissioningDate__c','Id','InstallationDate__c','InstalledBaseLocation__c','InstalledBaseLocation__r.Id','Name','ProductEnergy__c','ProductUnitClass__c','ProductUnitType__c','SerialNo__c','SerialNoException__c'] reindex_columns_ib = ['ArticleNo__c','CommissioningDate__c','Id','InstallationDate__c','InstalledBaseLocation__c','InstalledBaseLocation__r.Id','Name','ProductEnergy__c','ProductUnitClass__c','ProductUnitType__c','SerialNo__c','SerialNoException__c']
# EAN_Product_Code__c,Family,Id,Main_Product_Group__c,MaterialType__c,Name,Product_Code__c,ProductCode
reindex_columns_product2 = ['EAN_Product_Code__c','Family','Id','Main_Product_Group__c','MaterialType__c','Name','Product_Code__c','ProductCode']
# Reindex the columns to match the desired format # Reindex the columns to match the desired format
df = read_df.reindex(reindex_columns, axis=1) df = read_df.reindex(reindex_columns, axis=1)
df_ib = read_df_ib.reindex(reindex_columns_ib, axis=1) df_ib = read_df_ib.reindex(reindex_columns_ib, axis=1)
df_product2 = read_df_product2.reindex(reindex_columns_product2, axis=1)
df['Street'] = ( df['Street'] = (
df['Street__c'].astype(str) + ' ' + df['Street__c'].astype(str) + ' ' +
@ -151,7 +156,20 @@ merged_df_ib = merged_df_ib.drop('InstalledBaseLocation__c', axis=1)
merged_df_ib = merged_df_ib.drop('InstalledBaseLocation__r.Id', axis=1) merged_df_ib = merged_df_ib.drop('InstalledBaseLocation__r.Id', axis=1)
merged_df_ib = merged_df_ib.drop('Id_y', axis=1) merged_df_ib = merged_df_ib.drop('Id_y', axis=1)
print(merged_df_ib.columns) print(merged_df_ib.columns)
merged_df_ib.columns = ['Product2.EAN_Product_Code__c', 'FSL_1st_Ignition_Date__c', 'Id', 'InstallDate', 'Name', 'Kind_of_Energy__c', 'Kind_of_Installation__c', 'Main_Product_Group__c', 'SerialNumber', 'Serialnumber_Exception__c', 'Location.ExternalReference'] merged_df_ib.columns = ['Product2.Product_Code__c', 'FSL_1st_Ignition_Date__c', 'Id', 'InstallDate', 'Name', 'Kind_of_Energy__c', 'Kind_of_Installation__c', 'Main_Product_Group__c', 'SerialNumber', 'Serialnumber_Exception__c', 'Location.ExternalReference']
merged_df_ib = merged_df_ib.drop('Main_Product_Group__c', axis=1)
# assign Main_Product_Group__c based on product2 records
merged_df_ib = pd.merge(merged_df_ib,
df_product2[['Product_Code__c', 'Main_Product_Group__c']],
left_on='Product2.Product_Code__c',
right_on='Product_Code__c',
how='left')
merged_df_ib = merged_df_ib.drop('Product_Code__c', axis=1)
merged_df_ib = merged_df_ib.drop_duplicates(subset=['Id'], keep='first')
# Write each DataFrame to a separate CSV file # Write each DataFrame to a separate CSV file
address_df.to_csv('../3_upsert_address_and_parent_location/Address.csv', index=False) address_df.to_csv('../3_upsert_address_and_parent_location/Address.csv', index=False)
@ -159,4 +177,6 @@ parent_df.to_csv('../3_upsert_address_and_parent_location/Location.csv', index=F
child_df.to_csv('../5_upsert_child_location/Location.csv', index=False) child_df.to_csv('../5_upsert_child_location/Location.csv', index=False)
merged_df_ib.to_csv('../7_upsert_assets/Asset.csv', index=False) merged_df_ib.to_csv('../7_upsert_assets/Asset.csv', index=False)
## end mapping
print('Data has been successfully split into Address.csv, Parent_Location.csv, and Child_Location.csv files with duplicate checks applied.') print('Data has been successfully split into Address.csv, Parent_Location.csv, and Child_Location.csv files with duplicate checks applied.')

View File

@ -1,2 +1,3 @@
ObjectName,FieldName,RawValue,Value ObjectName,FieldName,RawValue,Value
Asset,Kind_of_Energy__c,2, Asset,Kind_of_Energy__c,4,3
Asset,Kind_of_Energy__c,5,3
1 ObjectName FieldName RawValue Value
2 Asset Kind_of_Energy__c 2 4 3
3 Asset Kind_of_Energy__c 5 3

View File

@ -7,9 +7,9 @@
"operation": "Readonly", "operation": "Readonly",
"externalId": "ExternalReference" "externalId": "ExternalReference"
},{ },{
"query": "SELECT EAN_Product_Code__c FROM Product2 WHERE EAN_Product_Code__c != null", "query": "SELECT Product_Code__c FROM Product2 WHERE Product_Code__c != null",
"operation": "Readonly", "operation": "Readonly",
"externalId": "EAN_Product_Code__c" "externalId": "Product_Code__c "
},{ },{
"query": "SELECT Product2Id,Id,InstallDate,Name,Kind_of_Energy__c,Kind_of_Installation__c,Main_Product_Group__c,SerialNumber,Serialnumber_Exception__c,LocationId FROM Asset", "query": "SELECT Product2Id,Id,InstallDate,Name,Kind_of_Energy__c,Kind_of_Installation__c,Main_Product_Group__c,SerialNumber,Serialnumber_Exception__c,LocationId FROM Asset",
"operation": "Insert" "operation": "Insert"